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Reduced basis method for evolution problems

Parametrised evolution equation

L

LI , LE ,P LI , LE ,P

W

WH WN := span {ϕn}Nn=1 WH ,WO

u(x , t;µ)

{Uk
H(µ)}Kk=1 {ak(µ)}Kk=1 Uk

N(µ), s(µ)

Solve
u(x , 0;µ) := u0(x ;µ)

∂tu(x , t;µ)− L[u(x , t;µ)] := 0

plus boundary conditions. Solutions u(·, t;µ) live in a (Sobolev) space W for each
t ∈ [0,Tmax].

W

WN

u(x,t;µ)
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Reduced basis method for evolution problems

Discrete simulations (FV, FE, DG, . . . )

L LI , LE ,P

LI , LE ,P

W WH

WN := span {ϕn}Nn=1 WH ,WO

u(x , t;µ) {Uk
H(µ)}Kk=1

{ak(µ)}Kk=1 Uk
N(µ), s(µ)

Solve
U0
H(µ) := P[u0(x ;µ)]

LI (µ,∆tk)[Uk+1
H ]− LE (µ,∆tk)[Uk

H ] := 0,

with ∆t = Tmax
K

. Solutions build trajectories in high dimensional discrete function space
WH .

WH

WN
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H

(µ)
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Reduced basis method for evolution problems

Reduced simulations (Projection on RB space)

L LI , LE ,P LI , LE ,P

W WH WN := span {ϕn}Nn=1

WH ,WO

u(x , t;µ) {Uk
H(µ)}Kk=1 {ak(µ)}Kk=1

Uk
N(µ), s(µ)

Solve
a
0(µ) := P[u0(µ)]

LI (µ,∆tk)[ak+1]− LE (µ,∆tk)[ak ] := 0.

Solutions build trajectories in low dimensional discrete function space WN .
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Reduced basis method for evolution problems

Reduced simulations (Projection on RB space)

L LI , LE ,P LI , LE ,P

W WH WN := span {ϕn}Nn=1 WH ,WO

u(x , t;µ) {Uk
H(µ)}Kk=1 {ak(µ)}Kk=1 Uk

N(µ), s(µ)

Reconstruct the solution

Uk
N(µ) :=

N∑
n=1

akn(µ)ϕn ∈ WH

or: Evaluate an output functional s(µ).
The latter is preferable in the RB context because it is independent of any high
dimensional computations.

WH

WN UK
N

(µ)
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Classi�cation of evolution problems

Classi�cation of evolution problems

Operator constraints

LI LE

1 linear in space, a�nely µ-dependent

2 = Id localized

3 coercive, non-coercive, lin-
ear, non-linear

= Id

4 linear in space localized or: linear in space,
a�nely µ-dependent5 localized, nonlinear

Case 1 is discussed in [Haasdonk&Ohlberger, 2008].

Case 2 is discussed in [Haasdonk et al., 2008] and [Drohmann et al.,2009]

Case 3 is discussed in [Grepl, 2005], [Grepl et al., 2008] and [Knezevic et al., 2009]

Our focus: nonlinear and non-a�nely decomposed implicit operators.

Revision: A�ne parameter dependence(*)

An operator is called a�nely decomposed if it can be written as a sum of products of
parameter dependent and parameter independent parts.
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Methodology Empirical interpolation

Non-a�nely decomposed operators

Idea

Approximate an operator L(µ)[Uk(µ)] with
few point evaluations.

Empirical interpolation [Barrault et al, 2004]

Collateral reduced basis space of
operator evaluations

WM := span{L(µi )[U
ki
H (µi )]}Mi=1

Collateral reduced basis ΞM :={ξi}Mi=1

of nodal base functions
Interpolation points x1, . . . , xM .

Base functions:

x

y
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x1x2

x
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Methodology Empirical interpolation

Non-a�nely decomposed operators ⇒ parametrised DEIM

Operator evaluations

Interpolation is gained through exact
operator evaluations at the interpolation
points such that

IM [L(µ)[U]](x) :=
M∑
m=1

ym(µ)ξm(x)

ym(µ) := L(µ)[U](xm)

The coe�cients can be computed
e�ciently, if the operator is localised.
A local version of the grid and
evaluations of the RB functions at
interpolation points need to be
precomputed in o�ine phase.

Base functions:
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RB scheme with linear implicit operator

Linear implicit operator

Projection of empirical interpolated LI (µ)

Let U =
∑N

n=1 anϕn be a discrete function in the reduced basis space
WN := span{ϕn}Nn=1. Then

∫
Ω

LI (µ)[U]ϕn ≈∫
Ω

IM

[
LI (µ)

[
N∑
n=1

anϕn

]]
(x)ϕn′(x) =

M∑
m=1

N∑
n=1

an ym(ϕn;µ)

∫
Ω

ξm(x)ϕn′(x)

with quickly computable online parts and precomputed o�ine parts.

Note: ym is linear, because the operator LI (µ) is linear in space.

⇓
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RB scheme with linear implicit operator

Linear implicit operator II

Reduced basis scheme

With degrees of freedom a
k := (ak1 , . . . , a

k
N) for k = 1, . . . ,K and a�nely decomposed

operators P, LE (µ) we get the scheme

a
0 −

QP∑
q=1

P
qσqP(µ) = 0, LI (µ)ak +

QE∑
q=1

L
q
Ea

k−1σqE (µ) = 0,

with

(LI (µ))n′,n :=
M∑
m=1

ym(ϕn;µ)

∫
Ω

ξmϕn′ (1)

Note: P[u0(µ)] and LE (µ) are linear and a�nely decomposed in this scheme, but could
be substituted easily by an empirical interpolation.
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RB scheme with non-linear implicit operator

Non-linear implicit operator

Newton method

De�ne the defect

V k+1,ν+1 := Uk+1,ν+1 − Uk+1,ν

and solve

FI (U
k+1,ν)[V k+1,ν+1] = −LI [Uk+1,ν ]− LE [Uk ],

for each k = 0, . . . ,K − 1 and each Newton step ν = 0, . . . , S(k) with
Uk+1 := Uk+1,0 := Uk,S(k) and FI being the Fréchet derivative of LI (µ).

How to reduce FI?
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RB scheme with non-linear implicit operator

Non-linear implicit operator

Newton method

FI (U
k+1,ν)[V k+1,ν+1] = −LI [Uk+1,ν ]− LE [Uk ],

Empirical interpolation of FI

empirical interpolation of LI

IM [LI ] =
M∑
m=1

ym(U)ξm

leads to an empirical interpolation of FI (U)[V ]

IM [FI (U)[V ]] =
H∑
i=1

M∑
m=1

∂iym(U)viξm =
∑
i∈τ

M∑
m=1

∂iym(U)viξm

where τ ⊂ {1, . . . ,H} is the smallest possible subset for which the above equation is
ful�lled. Note, that card(τ) ∈ O(M), because LI is localised.

{vi}i∈τ can be evaluated e�ciently in case of nodal basis of WH .

Martin Drohmann (mdrohmann@wwu.de) () MoRePaS 09 March 3, 2012 8 / 16



RB scheme with non-linear implicit operator

Non-linear implicit operator II

Reduced basis scheme

GA(Uk+1,ν
N )(ak+1,ν+1 − a

k+1,ν) = RHS(ak+1,ν , ak),

with A(UN) and G de�ned by

(A(UN))m,n :=
M∑
i=1

∂iym(UN)ϕn(xi ) and (G)n,m =

∫
Ω

ξmϕn.

The assembling of A(UN) costs O(MN ·MN) and multiplication with G has costs of
O(NMN). In addition this is still independent of H.
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Numerical results and validation

Convection-di�usion equation with parametrized geometry

The reduced basis space must not depend on the parameter.

Therefore, we introduce a reference geometry Ω̂ and a di�eomorphic mapping
Φ(µ) : Ω̂→ Ω(µ) for every parameter.

As a test case we choose a general (maybe nonlinear) convection-di�usion-reaction
equation on parametrized geometries.

∂tu(x , t;µ)−∇ · (K∇u(x , t;µ))− b · ∇u(x , t;µ)− ru(x , t;µ) = 0 in Ω(µ

µ

)× [0,Tmax].
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Numerical results and validation

Geometry transformation

Transformed heat equation

The special case of a transformed linear heat equation with a scalar di�usion factor k(µ)
results in a PDE with (anisotropic) di�usion, convection and a reaction term:

∂t û − k(µ)∇ · (GG t∇û) + k(µ)∇ · (vû)− k(µ)(∇ · v)û = 0 in Ω̂× [0,Tmax],

with notations

x̂ := Φ−1(x), û(x̂ , t) := u(Φ(x̂), t),

G(x̂) := DΦ−1|Φ(x̂), v(x̂) := G(x̂) (∇x̂ · G(x̂)) .
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Numerical results and validation

Finite volume scheme

Challenges

The geometry transformation introduces a di�usion tensor.

For non-a�ne geometry transformations the discrete operators do not depend
a�nely on the parameter. ⇒ Empirical interpolation of the purely explicit
discretization operator (case 2) or the implicit and explicit operators (case 4).

Numerical scheme for transformed heat equation

Discretization with a semi-implicit �nite volume scheme on a structured grid with
gradient reconstruction. [Drblíková&Mikula, 2007]

Implicit discretization of di�usion term.
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Numerical results and validation

Results

Solutions for µ = (0, 0) at timesteps t = 0.0, t = 0.75, t = 1.5.

Solutions for µ = (0.2, 0.2) at timesteps t = 0.0, t = 0.75, t = 1.5.
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Numerical results and validation

Results II

M=1

M=220

M=510

M=800

N

L2(Ω)−error

0 5 10 15 20

10−1

10−2

10−3

Figure: RB error convergence on 100 test
samples

dimension time [s]

H = 40000 24.3675

N = 7,M = 267 1.2224

N = 7,M = 800 2.0501

N = 14,M = 267 1.246

N = 14,M = 800 2.104

N = 20,M = 267 1.2707

N = 20,M = 800 2.1127

Table: average time measurements on 100 test
samples

Number of base functions in WH : 40000
Time gain factor for online phase: ≈ 10
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Outlook

Summary and Outlook

Summary

Reduced bases allow model reduction for parametrized evolution problems

RB framework can be applied to implicit and explicit schemes. (tested for implicit
linear operators)

Geometry parametrization is possible for di�eomorphic reference mappings

Reliability through a posteriori estimators in some cases

Outlook

Improvement of methodical parts (error estimators, RB/EI generation, stability)

Test case for schemes with non-linear implicit operators (nonlinear di�usion term)

Application to PDE systems

Implementation of a framework that works with e�cient numerical software
packages like Dune. (c.f. poster)
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